The Delta method: Main Result

Let $latex {T_{n}}&fg=000000$ an estimator of $latex {\theta}&fg=000000$, we want to estimate the parameter $latex {\phi(\theta)}&fg=000000$ where $latex {\phi}&fg=000000$ is a known function. It is natural to estimate $latex {\phi(\theta)}&fg=000000$ by $latex {\phi(T_{n})}&fg=000000$. Now, we can then ask: How the asymptotic properties of $latex {T_{n}}&fg=000000$ could be transfer to $latex {\phi(T_{n})}&fg=000000$?

The probability versions for the Big-O and little-o notations

We introduce here some notation very useful in probability and statistics. Definition 1 For a given sequence of random variables $latex {R_{n}}&fg=000000$, $latex {(i)}&fg=000000$ $latex {X_{n}=o_{P}(R_{n})}&fg=000000$ means $latex {X_{n}=Y_{n}R_{n}}&fg=000000$ with $latex {Y_{n}}&fg=000000$ converging to $latex 0&fg=000000$ in probability. $latex {(ii)}&fg=000000$ $latex {X_{n}=O_{P}(R_{n})}&fg=000000$ means $latex {X_{n}=Y_{n}R_{n}}&fg=000000$ with the family $latex {(Y_{n})_{n}}&fg=000000$ uniformly thigh.