## Multivariate kernel density estimation

Briefly, we shall see the definition of a kernel density estimator in the multivariate case. Suppose that the data is d-dimensional so that $latex {X_{i}=(X_{i1},\ldots,X_{id})}&fg=000000$. We will use the product kernel $latex \displaystyle \hat{f}_{h}(x)=\frac{1}{nh_{1}\cdots h_{d}}\left\{ \prod_{j=1}^{d}K\left(\frac{x_{j}-X_{ij}}{h_{j}}\right)\right\} . &fg=000000$ The risk is given by $latex \displaystyle \mathrm{MISE}\approx\frac{\left(\mu_{2}(K)\right)^{4}}{4}\left[\sum_{j=1}^{d}h_{j}^{4}\int f_{jj}^{2}(x)dx+\sum_{j\neq k}h_{j}^{2}h_{k}^{2}\int f_{jj}f_{kk}dx\right]+\frac{\left(\int K^{2}(x)dx\right)^{d}}{nh_{1}\cdots h_{d}} &fg=000000$