It is already known, that for $latex { Y\in {\mathbb R} }&fg=000000$ and $latex { X \in {\mathbb R}^{p} }&fg=000000$, the regression problem $latex \displaystyle Y = f(\mathbf{X}) + \varepsilon, &fg=000000$ when $latex { p }&fg=000000$ is larger than the data available, it is well-known that the curse of dimensionality problem arises. Richard E. Bellman …